Appropriate Soil Test Methods / Interpretations

Robert O. Miller Colorado State University Fort Collins, CO

Background

Affiliate Professor Colorado State University Extension Soil Specialist UC Davis 1988 - 1997 Ph.D. Montana State University

Coordinate the Agricultural Laboratory Proficiency (ALP) Program; three other lab proficiency programs.

Photographed at the William Lefter farm in Sarpy County, Nebraska in the mid-1930s. Millard Lefter, Craig Hubbard, Harry Lefter, William Left.

The ALP Program

ALP Program provides analytical proficiency services to 93 laboratories for evaluating soil, plant, water and environmental analyses.

37 Years experience and the only accredited Proficiency Testing provider in North America.

Agricultural Laboratory Proficiency Program

Program Basics

ALP submits five proficiency soils samples tri-annually, to each testing laboratory. Labs may choose from 132 analysis methods (i.e. SP, EC, P, etc) with each soil analyzed in triplicate. Plants and waters three samples per cycle.

Lab performance across the five soils is evaluated for both accuracy and precision.

Agricultural Laboratory Proficiency Program

ALP Participants

California Laboratories Enrolled 2014

Ag Laboratory & Consulting A & L Western Agricultural Labs Bolthouse Farms Betteravia Farms D & D Agricultural Laboratory Deerpoint Group Denelle Laboratory Dirty Business Soil Consulting J G Boswell Farms

JM Lord Inc. Morgan Consulting Precision Agri-Lab Soil Control Laboratory Stanworth Crop Consultants, Inc Valley Tech Agricultural Laboratory VPN Laboratory UC Davis Analytical Lab

AClass Accredited ISO 17043

Basis of Soil Testing

Lab Measurement Uncertainty

Appropriate Use Measurements

Interpretation and Pitfalls

New Methods

Soil Testing is based on three components, each required to make an accurate recommendation.

Quantitative

Electrical Conductivity NO₃-N Total Nitrogen Clay Content

Semi-Quantitative

Phosphorus (Bray, Olsen) K, Ca, Mg, Na Micronutrients (Zn, B, Cu) SOM

Generally soil fertility methods are semi-quantitative, an index of plant nutrient availability.

Example: Soil Test P An Index of Fertility

Soil Test P (STP) is an *index* of P <u>supply</u> and is not related directly to a quantity.

- It's based on a probability of crop response. It is not an intrinsic quantity of P in the soil.
- Two STP methods are used in the Western US: Bray for soils pH < 7.0 Olsen for soils pH > 6.0.
- Phosphorus is measured as ppm, not calculated as pounds per acre.

Standard Soil Analysis Methods

Standard methods for California are published in: <u>Soil, Plant and Water</u> and Water Reference Methods for the Western Region, 3rd edition.

Soil methods include:

Saturated paste moisture, pH, EC and soluble ions pH 1:1 and Buffer pH NO_3 -N and NH₄-N Phosphorus, (Bray and Olsen) K (and extractable Ca, Mg, and Na) by NH₄oAC, 1:10 pH 7.0 Zn, Cu, Fe, Mn (DTPA), SO₄-S SOM, TKN, CEC by displacement and CaCO₃

Methods not recognized include Mehlich 3 (P, K, Ca, Mg, Na, Zn, Cu, Mn, B) Mehlich 1, CEC by sum of cations,

Soil Analysis Measurement Uncertainty

Every measurement has associated with it, an uncertainty limit

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=eZzWiyD7KfWnGM&tbnid=YjSBDFuTqF sR8M:&ved=OCAUQjRw&url=http%3A%2F%2Fwww.bluesea.com%2Fproducts%2F1025B%2FVoltmeter%252010-16%2520Volts&ei=_IAyUe6HKZCFVQG_7IHgAQ&bvm=bv.43148975,d.aWc&psig=AFQjCNH373nb9BVk_iCv00-4UKVIvMjkjw&ust=1362338131819570

± 0.5 volts

This is true for any measurement

pH, EC, P, K, yield monitor, speedometer, sprayer output, temperature, etc.

pH : Measurement of acidity or alkalinity

Issue of significant digits

Default interpretation is 1/2 interval of the reported value

Uncertainty and Management

With agricultural management we must always assess the measurement uncertainty in the decision.

Example soil EC dS/m

 Field 1
 Field 2

 2.5 ± 1.0
 3.5 ± 0.3

Example, there is no difference in soil EC for the two fields

Uncertainty Calculation

Equation

$x \pm t s / \sqrt{n}$

where:

t(n-1) is a Student-t distribution with (n-1) degrees of freedom, x is the sample mean and S the unbiased estimate of the true standard deviation. Note often known as the t-test.

http://www.microbiologybytes.com/statsbytes/graphics/normal.png

Values of Student's t

DF	90 % CL	95% CL	99% CL
2	2.92	4.30	9.93
3	2.35	3.18	5.84
4	2.13	2.78	4.60
5	2.02	2.57	4.03

pH and Salinity

Method Uncertainty

99% of agronomists and consultants samples are analyzed in a single laboratory.

pH ± 0.2 across the pH range

EC (saturated paste)

EC dS/m	Uncertainty
0.5	± 0.05
1.8	± 0.09
3.7	± 0.29

Saturated Paste Moisture

Within Lab Uncertainty

Soil saturated paste moisture percentage (%)

Uncertainty changes with analysis range

Miller 2013, within lab uncertainty, data from ALP Program

Soil Nitrate

Within Lab Uncertainty

Uncertainty increases with NO_3 -N concentration.

Uncertainty of NO₃-N analysis is soil method specific with Cd reduction the least and ISE the greatest.

Soil ID	Median (ppm)	Uncert (ppm)
SRS-0804	4.8	± 1.2
SRS-0907	13.6	± 2.7
SRS-1101	27.4	± 3.2
SRS-1115	54.1	± 4.6
SRS-1210	84.5	± 6.8

Data based on within lab stdev, average of 30 Labs, uncertainty 95% confidence limits.

Lab NO₃-N Uncertainty

NO₃-N uncertainty across labs

Across labs NO₃-N uncertainty ranges from \pm 0.2 to \pm 14.7 ppm, with a median of \pm 3.2 ppm, for soil SRS-1101 ¹.

84% of labs provided results for uncertainty $< \pm 4.0$ ppm. Five labs had uncertainties much higher than the median of ALP participants.

Soil Test P and K

ALP

Lab Olsen-P Uncertainty

Lab Olsen-P Uncertainty Across Labs

Across labs Olsen-P uncertainty ranges from \pm 0.3 to \pm 11.2 ppm, with a median of \pm 2.2 ppm, for soil SRS-1201 ¹.

72% of labs provided results for uncertainty $< \pm 4.0$ ppm. Seven labs had uncertainties much higher than the median of ALP participants.

¹ ALP data based on within lab stdev, 33 Labs.

Plant Analysis Uncertainty

ALP SRB-1106, Tissue Leaf

ALP 30 laboratories providing results. N Results based on Dumas N Within lab uncertainty based on 95% confidence level, 3 replications.

Plant Tissue K

Within lab K Uncertainty

Across labs Plant K uncertainty ranges from \pm 0.02 to \pm 0.6 %K, with a median of \pm 0.11 %, for sample SRB-1106 ¹.

80% of labs provided results for uncertainty $< \pm 0.2$ %K. Six labs had uncertainties much higher than the median of ALP participants.

¹ ALP data based on within lab stdev, 31 Labs, uncertainty 95% level.

Plant Analysis Performance - Micros

Analysis Median			Intra - Lab Uncertainty
Zn (ppm)	40.9		± 5.8
Cu (ppm)	11.6		± 1.6
Fe (ppm)	194		0 ± 44
Mn (ppm)	61.1		± 4.4
B (ppm)	15.0		± 2.9

ALP 30 laboratories providing results. Within lab uncertainty based on 95% confidence level, 3 replications.

Miller, 2014

Soil Analysis

Right Sample ... Wrong Analysis

The Labs primary responsibility is for the accurate analysis of the sample.... Need to select the most appropriate test.

Examples:

Soil > pH 7.0, Olsen (bicarbonate) is the recommended method for phosphorus, not the Bray P method. Recommend Olsen P pH > 5.8

Calcareous soils, exchangeable calcium is typically over reported, by NH₄oAC extraction due to the dissolution of CaCO₃.

Estimated CEC for acid soils is under estimated and for alkaline soils CEC over reported. Estimated CEC cannot be calculated from sum of cations.

Soil Phosphorus

Bray vs Olsen Methods ppm

Soil ID	pH _{Sat Paste}	Bray P	Olsen P	Ratio
SRS-1408	6.26	39.8	17.0	0.42
SRS-1106	6.37	26.9	10.1	0.37
SRS-1209	6.51	7.3	4.6	0.63
SRS-0604	7.50	3.0	15.9	5.3
SRS-1002	8.74	2.9	19.3	6.6

ALP data based on average of 30 Labs, each soil analyzed in triplicate.

Generally Olsen P is 40% of Bray P for soil pH < 7.3

Soil Phosphorus

Bray vs Olsen P

ALP data, 81 soils, pH < 7.3, Bray P1 < 120 ppm.

Exchangeable Ca

NH₄oAC over estimation

Soil ID	pH _{Sat Paste}	<i>NH</i> ₄0AC 1.0	CaCO ₃ %	
		pH 7.0	pH 8.5	
SRS - 96108	7.10	1906	1389	0.5
SRS - 96105	7.70	4907	2841	2.0
SRS - 96106	7.72	3509	1703	25.0
SRS - 95105	7.65	4532	2367	9.0
SRS - 96104	6.10	1326	1381	0.1

IAS Lab data based on average of triplicate analysis.

Soil pH > 7.0, NH₄oAC dissolves CaCO₃, resulting in over inflated Ca Does not impact K, Mg or Na

Soil CEC Acid Soils

Direct vs Estimated Methods cmol kg⁻¹

Soil ID	рН _{Sat Paste}	CEC Direct	CEC Estimated	Buf pH
SRS-0906	5.74	7.4	3.1	6.79
SRS-0915	4.21	5.4	2.1	6.45
SRS-1008	5.59	9.2	6.6	6.87
SRS-1101	4.67	8.1	2.0	6.26
SRS-1107	5.25	20.7	8.4	6.37

ALP data based on average of 30 Labs, each soil analyzed in triplicate.

Soils with pH < 6.0 results in low bias for CEC estimated

Soil CEC Alkaline Soils

Direct vs Estimated Methods: cmol kg⁻¹

Soil ID	pH _{Sat Paste}	CEC Direct	CEC Estimated	% CaCO ₃
SRS-1307	5.97	4.8	5.3	<0.2
SRS-1308	6.70	10.9	9.4	0.7
SRS-1105	7.62	9.6	§14.0	5.3
SRS-1014	7.72	37.7	43.4	51
SRS-1002	8.74	11.1	26.4	1.6

ALP data based on average of 30 Labs, each soil analyzed in triplicate.

Soil pH > 7.0 results in high bias for CEC estimated

Salinity / Sodicity / Boron Toxicity

Paste Constituents

Saturated Paste is the most important test used to assess soil salinity and sodicity.

Results can be cross checked

 $10 \times EC = \Box$ cations ¹

¹ Results within analysis uncertainty

Analysis	ALP Soil SRS ID						
	0912	1012					
Sat Paste %	34.6	50.5	31.0				
рН	7.39	7.72	7.13				
EC dS/m	1.10	3.6	0.51				
Ca meq/l	7.6	11.6	3.4				
Mg meq/l	2.7	3.7	0.75				
Na meq/I	1.9	23.9	0.33				
SAR	0.87	9.3	0.24				
□ Cations	12.1	3.9	4.5				

ALP data 41 Labs, each soil analyzed in triplicate.

Saturated Paste Extract

Paste Anions

Results can be cross checked

 $10 \times EC = \Box$ anions ¹

B values < 0.04 are = '0.0'

¹ Results within analysis uncertainty

Analysis	ALP Soil SRS ID				
- UR	0912	1014	1012		
Sat Paste %	34.6	50.5	31.0		
рН	7.39	7.72	7.13		
EC dS/m	1.10	3.6	0.51		
B (ppm)	0.12	2.1	0.05		
HCO _{3 meq/L}	2.0	2.2	1.3		
CI meq/L	0.84	11.7	0.4		
NO _{3 meq/L}	3.5	5.5	2.2		
SO _{4 meq/L}	4.9	15.7	0.7		
□ Anions	11.2	35.1	4.7		

ALP data 41 Labs, each soil analyzed in triplicate.

Saturated Paste – Acid Soils

Paste Constituents

Acid soils typically have HCO₃ < 0.5 meq/l and B values < 0.10 ppm.

For acid soils (pH < 6.5) EC is generally high (> 0.4 dS/m) only on soils with high NO_3

 $HCO_3 < 0.3 \text{ meq/l is near MDL}$ (method detection limit).

Analysis	ALP Soil ID		
	1204	1215	
Sat Paste %	30.7	41.5	
рН	5.08	5.07	
EC dS/m	0.11	1.26	
HCO _{3 meq/L}	0.35	0.44	
CI meq/L	0.47	0.27	
NO _{3 meq/L}	0.03	10.6	
SO _{4 meq/L}	0.26	0.07	
B (ppm)	0.04	0.03	

ALP data 41 Labs, each soil analyzed in triplicate.

Saturated Paste Interpretation

- Saturated paste % □ 2 x field capacity
 30.5% □ 15.2% moisture, or 1.3" per ft soil
- SP pH > 8.0 associated with high CaCO₃ contents, pH > 8.5 yield limiting.
- SP EC > 2.0 impact sensitive crops, EC values > 4.0 impact all but very tolerant crops.
- SP Ca:Mg ratios < 2.0 likely to have water infiltration issues, especially on serpentine soils
- SP HCO₃ > 40% of anions will result in a higher adjusted SAR value.

Alkaline soils dominated by HCO_3 and NO_3 -N may result in crop Fe deficiencies

Lab Results CSI

Example 1

A SJV field has been sampled and a new consultant is recommending gypsum for a melon crop which has shown Ca deficiencies in the past.

SP%	рΗ	EC	Ca	Mg	Na	SAR	HCO ₃	Cl	NO ₃	SO_4	В
%		dS/m	meq/l	meq/l	meq/l	meq/l	meq/l	meq/l	meq/l	meq/l	ppm
36.0	7.56	2.3	13.2	6.1	4.8	1.6	1.6	2.8	10.9	8.9	0.2
Р	Х-К	X-Ca	X-Mg	X-Na	SOM	CaCO ₃	CEC				
ppm	ppm	ppm	ppm	ppm	%	%	cmol/kg				
49.3	565	3450	366	96	1.51	5.5	12.5				

Is this a good recommendation?

¹ Real field soil sample, previous crop potato.

Lab Results CSI

Example 2

A Sonoma county field under new ownership has been sampled. Field has had production issues. What' your recommendation for chardonnay grapes in the 7th year of production.

SP%	рΗ	EC	Ca	Mg	Na	SAR	HCO ₃	Cl	NO ₃	SO_4	В
%		dS/m	meq/l	meq/l	meq/l	meq/l	meq/l	meq/l	meq/l	meq/l	ppm
37.9	5.46	0.41	1.1	1.3	0.8	0.73	0.36	1.23	0.6	1.39	0.08
Р	X-K	X-Ca	X-Mg	X-Na	SOM	CaCO ₃	CEC				
ppm	ppm	ppm	ppm	ppm	%	%	cmol/kg				
6.9	240	1174	449	31	2.30	0.60	10.1				

Why this recommendation?

¹ Real field soil sample, previous grapes.

Lab Results CSI

Example 3

A Turlock almond orchard field has been sampled. Owner not pleased with production. What' do you see as issues.

SP%	рΗ	EC	Са	Mg	Na	SAR	HCO ₃	Cl	NO_3	SO_4	В
%		dS/m	meq/l	meq/l	meq/l	meq/l	meq/l	meq/l	meq/l	meq/l	ppm
38.4	7.61	0.93	7.0	0.96	0.41	0.2	2.1	0.4	4.9	1.8	0.41
Р	X-K	X-Ca	X-Mg	X-Na	SOM	CaCO ₃	CEC				
ppm	ppm	ppm	ppm	ppm	%	%	cmol/kg				
33.6	167	3100	94	12	1.70	5.50	10.6				

What's your recommendation(s)?

Real field soil sample, almonds.

Soil Health - Solvita CO 2

Premise: Rewetting a dry soil with moisture results in a burst of microbial respiration release of CO₂. Quantity related to microbial population and soil C & N supply.

Method: 50 g of soil is adjusted to field moist, sealed and CO₂ content of absorbing gel content measured after 24 hours.

Interpretation: low values indicate low microbial population and low potential for N mineralization. Calibration data limited, missing 3rd link of the chain.

Developed by Dr. W. Brinton, Woods End Laboratory.

Solvita CO ₂

ALP results show the Solvita method has inconsistencies in specific labs for some soils.

Lab comments indicate that low values are associated with CO₂ leakage, resulting low bias.

Method uncertainty suggests Solvita interpretation ranges: 0-10, 10-20, 20-30, 30-50 and > 50 ppm.

Soil ID	Lab A	Lab B	Lab C
SRS-1406	7.8	7.3	6.0
SRS-1407	9.7	7.8	2.3
SRS-1408	57.1	57.2	34.9
SRS-1409	37.2	30.8	14.6
SRS-1410	31.1	27.2	24.0

ALP data 9 Labs, each soil analyzed in triplicate, June 2014.

Uni-best Test

Premise: Based on an ion exchange resin to extract nutrient cations and anions from soil. Developed by Dr. E. Skogley at Montana State, Univ. Marketed as lab and in-field soil test.

Method: Resin Capsule is placed in soil for 4 days. Extracted and tested in laboratory. Quantitative for NO3 and soil index for all other nutirents.

Interpretation: Little or no calibration data limited. Missing 3rd link of the chain.

Soil Optix Sensor

Premise: Based on passive sensor measurement of isotope decay of thorium, potassium 40, uranium and cesium in upper foot of soil. Algorithms are then developed with standard soil tests which include texture.

Method: In field scanner, capable of sub acre resolution developed in the Netherlands. Requires standard soil test calibration.

Interpretation: Little or no calibration data limited. Needs to be correlated.

http://www.practicalprecision.ca/wp-content/uploads/CG_SoilOptix_COFS_2013.pdf

www.practicalprecision.ca

Conclusions

All soil analyses testing has associated with it uncertainty, which needs to be considered when reviewing lab results.

All lab results have uncertainty. Specific labs have wide uncertainty issues.

Low analysis test values near the lab detection limits are problematic. (ie. B saturated paste < 0.5 ppm)

Continued

Specific analysis methods are prone to miss use. Bray is not appropriate for alkaline soils. Estimated CEC (sum of cations) is susceptible to errors. Saturated Paste provides useful information for making salinity / sodicity / nutrients.

Evaluate soil results based on multiple analyses, site/crop history.

New methods need to have calibration, without which the test is just a number!

ALP Program

Laboratory Quality

When contacting a laboratory verify they are enrolled in a proficiency program – *and that it's a program that* assesses lab performance based on both accuracy and precision!

Thank You for Your Time and Attention

The Unknown

There are known knowns. We also know, there are known unknowns. That is to say We know there are some things We do not know.

But there are also unknown unknowns, The ones we don't know we don't know.

D. Rumsfeld Feb. 12, 2002 Department of Defense news briefing

Soil Testing is based on three components, each required to make an accurate recommendation.

Mapping P Uncertainty

What is your uncertainty?

Olsen P = 16 ppm

Method Uncertainty \pm 4

/	12	15	18
	14	13	17
	19	14	20

1

Soil Health – H3A

Premise: New extractant for NO3-N, P and K based on dilute organic acids developed by Dr. Rich Haney at USDA-ARS. May be used in conjunction with soluble C and N.

Method: 5 g of soil extracted with organic acid, analysis by ICP-AES.

Interpretation: low values indicate low fertility. Calibration data limited. Little or no field research.

SOIL HEALTH ANALYSIS

Lab Number	0048	0049
Description	FIELD D	FIELD E

Soil Health Results

Respiration (Solvita CO2-C) (ppm)	36.4	29.0
Water Extractable Organic Carbon (ppm)	153	191
Water Extractable Organic Nitrogen (ppm)	9.3	16.1
Organic C:N	16.4	11.9
Organic N:P	0.4	1.9
% Microbially Active Carbon	23.8	15.2
Soil Health Calculation	6.1	6.4
	00011	0001

